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We report the results of several nonequilibrium experiments performed on superconducting/normal/
superconducting �S/N/S� Josephson junctions containing either one or two extra terminals that connect to
normal reservoirs. Currents injected into the junctions from the normal reservoirs induce changes in the
electron energy distribution function, which can change the properties of the junction. A simple experiment
performed on a three-terminal sample demonstrates that quasiparticle current and supercurrent can coexist in
the normal region of the S/N/S junction. When larger voltages are applied to the normal reservoir, the sign of
the current-phase relation of the junction can be reversed, creating a “� junction.” We compare quantitatively
the maximum critical currents obtained in four-terminal � junctions when the voltages on the normal reservoirs
have the same or opposite sign with respect to the superconductors. We discuss the challenges involved in
creating a “Zeeman” � junction with a parallel applied magnetic field and show in detail how the orbital effect
suppresses the critical current. Finally, when normal current and supercurrent are simultaneously present in the
junction, the distribution function develops a spatially inhomogeneous component that can be interpreted as an
effective temperature gradient across the junction, with a sign that is controllable by the supercurrent. Taken as
a whole, these experiments illustrate the richness and complexity of S/N/S Josephson junctions in nonequilib-
rium situations.
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I. INTRODUCTION

When a superconducting metal �S� and a normal metal
�N� are placed in contact with each other, the properties of
both metals are modified near the S/N interface. This effect,
called the superconducting proximity effect, was widely
studied in the 1960’s.1 Our microscopic understanding of the
proximity effect underwent dramatic progress in the 1960’s
as a result of new experiments performed on submicron
length scales, coupled with theoretical ideas about phase-
coherent transport from mesoscopic physics. It is now under-
stood that the conventional proximity effect in S/N systems
and the dc Josephson effect in S/N/S junctions arise from
the combination of three ingredients: Andreev reflection of
electrons into holes �and vice versa� at the S/N interface,
quantum phase coherence of electrons and holes, and time-
reversal symmetry in the normal metal. Our new understand-
ing of the proximity effect in equilibrium situations and in
linear response transport is demonstrated by a wealth of
beautiful experiments2 and is summarized in several theoret-
ical reviews.3,4

In the past several years, research in S/N systems has
increasingly focused on nonequilibrium phenomena. Under-
standing nonequilibrium situations is more difficult than un-
derstanding near-equilibrium situations, because the electron
energy distribution function in nonequilibrium may be quite
different from a Fermi-Dirac function. In such situations, the
behavior of a specific sample may depend critically on the
rates of electron-electron or electron-phonon scattering. A
pioneering work in this area was the demonstration by Basel-
mans et al.5 that the current-phase relation of a S/N/S Jo-

sephson junction can be reversed, producing a so-called “�
junction.” This effect is produced by applying a voltage that
suitably modifies the form of the distribution function.

This paper presents results of several experiments per-
formed on S/N/S Josephson junctions with extra leads con-
necting the N part of the devices to large normal reservoirs.
Samples are made from polycrystalline thin films of alumi-
num �S� and silver �N� deposited by thermal evaporation.
Electrical transport is in the diffusive limit—i.e., the electron
mean free path is much shorter than all other relevant length
scales in the problem, including the sample length and the
phase coherence length. In these experiments, the two super-
conductors are usually at the same potential, referred to as
ground. Different voltages are applied to the normal reser-
voirs, which in most cases cause the distribution function in
the structures to deviate strongly from a Fermi-Dirac distri-
bution.

Several of the experiments have been analyzed quantita-
tively within the framework of the Usadel equations,4,6

which are appropriate for S/N samples in the diffusive limit.
The equilibrium component of the Usadel equation is a dif-
fusion equation describing pair correlations in N and S. The
nonequilibrium, or Keldysh, component consists of two
coupled Boltzmann equations for the spectral charge and en-
ergy currents. Incorporating inelastic scattering into the
Keldysh equations involves inserting the appropriate colli-
sion integrals; but this procedure has so far been followed
fully in only a few cases. Moreover, the effect of inelastic
scattering on the equilibrium component of the Usadel equa-
tion or the proximity effect on the collision integrals have
never been included self-consistently to our knowledge.
More commonly, researchers analyzing nonequilibrium phe-
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nomena solve either the Keldysh equation without collision
integrals, or the standard Boltzmann equation with collision
integrals but without superconducting correlations, depend-
ing on which aspect of the problem is more important. At the
end of this paper we compare these approaches as applied to
the last experiment discussed in the paper.

The paper is organized as follows: Sec. II describes the
sample fabrication and measurement techniques. Section III
describes a simple experiment, called the “dangling arm,”
involving a three-terminal S/N/S device with a single extra
lead to a normal reservoir. The dangling arm experiment was
first reported by Shaikhaidarov et al.7 We include it here
because it provides a clear demonstration of the superposi-
tion of quasiparticle current and supercurrent in a S/N/S
junction, an essential result for the remainder of the paper.
Section IV describes the �-junction experiment in three- and
four-terminal devices. The four-terminal sample allows a di-
rect comparison of the situations present in the three-
terminal � junction8 and the original four-terminal � junc-
tion of Baselmans et al.5 Section V discusses the behavior of
the critical supercurrent as a function of magnetic field ap-
plied parallel to the plane of the sample, and shows the dif-
ficulty involved in trying to achieve a � junction by Zeeman
splitting of the conduction electrons.9,10 The theoretical cal-
culation relevant to this geometry is given in the appendix.
Section VI discusses an experiment in which supercurrent
and quasiparticle current are independently controlled in a
three-terminal S/N/S junction, leading to an effective tem-
perature gradient across the junction.11 The local distribution
function is measured by a tunnel probe near one of the S/N
interfaces. The discussion provides information that was not
included in our previous report on this experiment.12 To-
gether these experiments demonstrate the richness of phe-
nomena present in S/N/S Josephson junctions under nonequi-
librium conditions.

II. EXPERIMENTAL TECHNIQUES

A. Fabrication

All samples in this work were fabricated using e-beam
lithography. A bilayer of resist was deposited onto an un-
doped Si wafer covered only with its native oxide layer. The
bilayer was formed by first depositing a copolymer
P�MMA /MAA�, followed by a second layer of PMMA. The
bilayer was exposed by 35-keV electrons and then developed
to make a mask for evaporation. With the resist bilayer, it is
possible to fabricate undercuts in the mask, allowing angled
evaporation techniques to be used.13 Therefore, multiple lay-
ers of different metals �either 99.99% purity Al or 99.9999%
purity Ag� were sequentially deposited without breaking
vacuum.

These techniques were used to prepare the sample shown
in Fig. 1. To create the tunnel probe �TP�, 30 nm of Al was
deposited while the sample was tilted 45°, creating an actual
thickness of about 21 nm of Al on the surface. Next, a mix-
ture of 90%Ar-10% O2 gas was leaked into the vacuum
chamber to a pressure of 60 Torr. After 4 min, the chamber
was evacuated again, in preparation for the following depo-
sitions: For the silver wires; labeled R1, R2, and RN; 30 nm of

Ag was deposited with the plane of the wafer perpendicular
to the evaporation source. For the superconducting reservoirs
S1 and S2, the sample was tilted 45° and rotated 180° in
order to deposit 90 nm of Al �for a 60 nm thickness�. Finally,
the sample was rotated another 140 degrees in preparation
for a final, thick layer of Ag to be deposited over the normal
reservoir N. The sample in Fig. 6 followed a similar proce-
dure, except foregoing the first Al deposition and oxidation
steps.

B. Experimental setup

Samples were measured inside the mixing chamber of a
top loading dilution refrigerator. All electrical leads to the
sample passed through commercial LC � filters at the top of
the cryostat and cold RC filters in the cryostat consisting of
2.2 k� resistors in series and 1 nF capacitors coupled to
ground.

Current-voltage characteristics �I-V� curves� were ob-
tained through four-probe measurements across the sample.
The current was swept using a triangle wave and several
cycles were collected and averaged together. Measurements
of dI /dV were obtained by adding a slow ��1 mHz� triangle
wave pattern to the sine output of a lock-in amplifier. The
lock-in amplifier was operated at low frequencies �less than
100 Hz� to allow for extrapolation of the system response to
zero frequency. Both the in-phase and out-of-phase compo-
nents of the signal were recorded and utilized in the analysis.

III. DANGLING ARM EXPERIMENT

The dangling arm experiment was first proposed in the
Ph.D. thesis of Gueron,14 although a related geometry was
discussed by Volkov two years earlier.15 The experiment is
performed on a three-terminal S/N/S Josephson junction
sample similar to the one shown in Fig. 1, in which the
tunnel probe in the lower left was unused. We label the three
terminals of the sample S1, S2, and N, and the resistances of
the three arms R1, R2, and RN. �We neglect for the moment

FIG. 1. SEM image of sample with two superconducting reser-
voirs, labeled S1 and S2, and normal reservoir labeled N. A tunnel
probe, labeled TP, consists of thin Al oxidized prior to deposition of
Ag wire.
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the variation of these resistances due to proximity effect.�
One measures the resistance from N to S1, while leaving S2
open �dangling�. Naively, one might expect the measured
resistance between N and S1 to be equal to RN+R1. That
result would imply that the current travels directly from N to
S1, which in turn implies that S1 and S2 are at different
voltages. Given that S1 and S2 are coupled by the Josephson
effect, the relative phase � between S1 and S2 then accumu-
lates at the Josephson frequency d� /dt=2eV12 /�. If, how-
ever, the injected current I splits into a piece I1 through R1
and a piece I2 through R2, such that I1R1= I2R2, then S1 and
S2 will be at the same potential. To avoid having a net cur-
rent flowing into the dangling arm, the sample must then
provide a supercurrent IS from S2 to S1 that exactly cancels
the quasiparticle current I2. In this scenario, R1 and R2 are
effectively acting in parallel, and the measured resistance
will be RP�RN+R1R2 / �R1+R2�.

Figure 2 shows the two-terminal I-V curve taken at T
=51 mK from a sample similar to the one shown in Fig. 1,
with nominal resistance values R1=7.0 �, R2=7.0 �, and
RN=16.9 �. The inset shows dV /dI vs I, providing a clearer
view of the effective resistance. Either plot shows that the
resistance is about 20.7 � when the applied current is less
than about 0.94 �A. This resistance is very close to the
nominal value of RP=20.4 �. When the current exceeds
0.94 �A, the resistance increases to the value 24.6 �, which
is very close to RN+R1=23.9 �. �Resistance differences less
than an Ohm are attributed to the finite size of the T junction
in the middle of the sample.� These data confirm the idea
outlined in the previous paragraph, that supercurrent and
quasiparticle current can coexist in the normal region of a
S/N/S Josephson junction.

The transition at Ic
NS where the resistance increases to

RN+R1 occurs when the supercurrent across the S/N/S Jo-

sephson junction exceeds the S/N/S critical current Ic
SNS.

However, since only the fraction I2= IR1 / �R1+R2�� I /2 of
the injected current must be cancelled by the supercurrent,
one should expect that Ic

NS= Ic
SNS�R1+R2� /R1. The data in

Fig. 3 show that this expectation is fulfilled at relatively high
temperatures, but that at lower temperature Ic

NS falls well
below this value.

Two reasons for the small values of Ic
NS at low tempera-

ture were given by Shaikhaidarov et al.7 Those authors
solved the Usadel equation analytically in the limit where the
S/N interfaces have high resistance �poor transparency�, so
that proximity effects are small and the Usadel equation can
be linearized. They pointed out that Ic

SNS is suppressed below
its equilibrium value due to the applied voltage at N, a result
we will reinforce below. They also argued that the phase-
dependence of the resistances R1, R2, and RN due to proxim-
ity effect causes the measured value of Ic

NS to be smaller than
the nominal value Ic

NS= Ic
SNS�R1+R2� /R1.

We believe that the effect related to the phase dependence
of the resistances is small and the relative decrease in Ic

NS at
low temperature is due predominantly to the decrease in Ic

SNS

as a function of U. This effect is demonstrated graphically in
the inset to Fig. 3. There the critical current of the Josephson
junction Ic

SNS multiplied by the constant ratio �R1+R2� /R1, is
plotted as a function of the voltage U applied to the normal
reservoir. As can be seen in the inset, Ic

SNS decreases rapidly
as a function of U. The straight line through the origin in the

FIG. 2. Voltage versus current measured between reservoir N
and S1 with S2 floating, at T=51 mK. Dotted lines represent slopes
of 20.7 and 24.6 �, which correspond to the resistances RP and
RN+R1, respectively. Inset: Differential resistance vs current under
similar conditions, showing agreement between the two measure-
ment techniques.

FIG. 3. Critical current measured between N and S1 ���, be-
tween N and S2 ���, and between S1 and S2 ���—the latter multi-
plied by the ratio �R1+R2� /R1�2—for different temperatures. The
three data sets are in close agreement at temperatures above about
250 mK. Inset: Graphical approach to calculation of low-
temperature critical current between N and S1. The dots are mea-
surements of the critical current across S1-S2, again multiplied by
�R1+R2� /R1, as a function of applied voltage U between N and S1.
The critical current decreases rapidly with increasing U. The line
through the origin represents the injected current from N. The in-
tersection gives the critical current Ic

NS at the critical value of U.
Note that all critical current values in the inset are 15–20 % larger
than in the main panel, due to a small magnetic field B=125 G
present when the latter data were obtained.

NONEQUILIBRIUM TRANSPORT IN MESOSCOPIC MULTI-… PHYSICAL REVIEW B 77, 014528 �2008�

014528-3



inset represents the current injected into the sample from the
N reservoir U /RP, where the resistances are evaluated at
phase difference � /2 between S1 and S2. The intersection of
the two curves shows the value of the dangling arm critical
current Ic

NS �ordinate� at the critical voltage Uc
NS �abscissa�.

The figure demonstrates the large reduction in S/N/S critical
current due to the applied voltage U, which explains why Ic

NS

is much smaller than Ic
SNS�R1+R2� /R1 at low temperature. At

high temperatures T�eU /kB, the relative reduction is less
significant due to two reasons: First, increasing the tempera-
ture decreases the critical current Ic

SNS, and thereby also Uc
NS.

Moreover, to observe a sizable reduction in Ic
SNS�U�, �eU� has

to exceed kBT.

IV. S/N/S NONEQUILIBRIUM � JUNCTION

A. Three-terminal � junction

Figure 3 shows, not surprisingly, that the critical current Ic
of an S/N/S Josephson junction decreases when quasiparticle
current is injected into the junction from a normal reservoir.
Indeed, if the only effect of the injected current were to heat
the electrons in the junction, then one would expect the criti-
cal current to continue decreasing monotonically as a func-
tion of the applied voltage U.16 That this is not the case
represents a major discovery in nonequilibrium superconduc-
tivity by Baselmans et al.5 in 2000. Those authors showed
that Ic first decreases as a function of U, but then increases
again at higher U. The explanation17,18 for this counterintui-
tive result consists of two pieces. First, one can view the
supercurrent in the sample as arising from the continuous
spectrum of Andreev bound states in the normal metal,19,20

which carry supercurrent in either direction, depending on
their energy. Second, in the presence of the applied voltage U
the electron distribution function in the junction is not a hot
Fermi-Dirac distribution, but is closer to a two-step
distribution—as long as the short sample length does not
allow electron thermalization within the sample.21 The two-
step distribution function preferentially populates the minor-
ity of Andreev bound states that carry supercurrent in the
direction opposite to the majority, hence it reverses the
current-phase relation in the junction.17,18 Such a Josephson
junction is called a “� junction” because the energy-phase
and current-phase relations are shifted by � relative to those
of standard Josephson junctions.

The original �-junction experiment of Baselmans et al.
was performed in a four-terminal sample, where voltages of
opposite sign were applied to the two normal reservoirs.
Later, Huang et al.8 demonstrated that a � junction can also
be obtained in a three-terminal geometry with a single nor-
mal reservoir, a result predicted by van Wees et al.22 10 years
earlier.

Figure 4�a� shows results of a three-terminal �-junction
experiment performed on a sample similar to the one in Fig.
1, where the tunnel probe in the lower left portion of the
figure is not used. We measure the I-V curve of the S/N/S
Josephson junction using a four-probe current-bias measure-
ment, while a dc voltage is simultaneously applied to the
normal reservoir via a battery-powered floating circuit. Fig-
ure 4�a� shows a series of I-V curves at different values of

the voltage U applied to the normal reservoir. Figure 4�b�
shows the critical current Ic vs U. Notice that Ic initially
decreases with an increasing U, as shown in the inset to Fig.
3. But as U increases further, Ic reaches a minimum value
�indistinguishable from zero in this experiment23� at U=Uc
�34 �V, then grows again to reach a second maximum at
U�63 �V. The minimum in Ic separates the standard Jo-
sephson junction behavior at low values of U from the
�-junction behavior at higher U. If instead of plotting the
critical current Ic �which is by definition a positive quantity�
one were to plot the supercurrent Is at a fixed phase differ-
ence �=� /2 across the junction then the graph would show
a smooth curve passing through zero at U=Uc, reaching a
local minimum at U�63 �V and gradually returning to zero
at large U.

B. Comparison of four-terminal � junctions with symmetric
and antisymmetric bias

The physical explanation of the � junction in the three-
terminal sample is the same as in the four-terminal sample,
with the differences arising only from the distribution func-
tions. Figure 5 shows a schematic drawing of the distribution
function f�E� along a path from a reservoir N to S for both
four-terminal and three-terminal samples for U	kBT, as-
suming weak electron-electron interactions in the N wire,
and neglecting the proximity corrections. Notice in figures
�c� and �d� that f�E� consists of a double-step function, the

FIG. 4. �a� Voltage vs current across the S/N/S junction for
selected voltages U applied to the normal reservoir. Graphs for
different U are offset for clarity, with U=0, 17, 29, 35, 41, 63, 92,
and 114 �V from bottom to top. The hysteresis in the U=0 data is
probably due to heating of the Ag wire in the normal state. �b�
Critical current vs U.
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step height within the energy range −eU to eU changing with
the location along the wire. As we will show in the next
section, the even �in energy� part of f�E� has no effect on the
magnitude of the supercurrent �in the absence of electron-
electron interactions�, suggesting that the voltage-dependent
critical current Ic�U� would be identical in three-terminal and
four-terminal samples with identical dimensions and resis-
tances. However, there are three reasons why this is not quite
true: First, Joule heating is more prevalent in the four-
terminal device, which rounds the distribution functions
more than in the three-terminal device. Second, the spectral
supercurrent density jE�E�, evaluated at the junction point
will be slightly smaller in the four-terminal sample than in
the three-terminal sample due to the presence of the addi-
tional arm connecting the sample to a normal reservoir.20

Finally, f�E� will be slightly more rounded in the four-
terminal sample due to the increased phase space available
for electron-electron interactions. Roughly speaking, the rate
of e-e interactions at a given energy is proportional to f�E�

�1− f�E��, which is maximized when f�E�=1 /2. Each of
these effects serve to increase Ic in the three-terminal geom-
etry relative to the four-terminal geometry.

It is not practical to compare critical currents from two
different samples, since they will never have identical di-
mensions nor electrical resistances. Instead, it was proposed
in Ref. 8 to compare the critical currents in a single four-
terminal sample under conditions of symmetric and antisym-
metric voltage bias of the two normal reservoirs. Figure 6
shows the sample we fabricated for this experiment, with the
superconductive reservoirs labeled S1 and S2 and the normal
reservoirs labeled N1 and N2. By applying a positive poten-
tial U to N1 and a negative potential −U to N2, one repro-
duces the experiment performed by Baselmans et al. We call
this situation antisymmetric bias, since the two applied volt-

ages differ by a negative sign. In this case the quasiparticle
current overlaps with the supercurrent only at the crossing
point of the sample where the electrostatic potential is equal
to zero. In contrast, applying the identical voltage U on both
N1 and N2 �with ground defined at one of the superconduct-
ing electrodes�, called symmetric bias, will produce a situa-
tion mimicking that in the three-terminal experiment of
Huang et al.8 Notice that by mimicking a three-terminal
sample with a four-terminal sample, geometrical differences
between the two experiments are eliminated, so any observed
difference in the critical currents will be due either to e-e
interactions or to Joule heating.

The preceding description of symmetric and antisymmet-
ric biases holds strictly only if the resistances of the two
lower arms are identical. Otherwise, application of antisym-
metric bias will result in a nonzero potential at the cross and
some quasiparticle current will flow into the superconducting
reservoirs. In that case, f�E� will take a form intermediate
between those depicted in Figs. 5�c� and 5�d�, which de-
creases the measurement contrast between the two biases. In
our experiments we took care to measure the resistances of
all the arms and to ensure that the voltages at the two normal
reservoirs were indeed equal �for symmetric bias� or opposite
�for antisymmetric bias�.

Figures 7�a� and 7�b� show I-V curves measured across
the S/N/S junction at T=170 mK, for several different values
of U. Curves with increasing values of U are offset upward
for clarity. Figure 7�a� shows the data for antisymmetric bias
while Fig. 7�b� shows symmetric bias. The data follow the
same trend observed in Fig. 4, namely, the critical current
first decreases with increasing U, then increases again before
finally disappearing altogether. Figure 8�b� shows this criti-
cal supercurrent as a function of U. In this figure we have
plotted the critical current as negative in the range of volt-
ages after Ic disappears initially, to signify that the junction is
in the � state as discussed earlier.

The transition from the 0 state to the � state can be con-
firmed directly by experiment,5 without recourse to the the-
oretical explanation. The resistances of the Ag arms of the

FIG. 5. �a� Depiction of electron flow in the four-terminal con-
figuration. �b� Depiction of electron flow in three-terminal configu-
ration. �c� Schematic representation of the distribution function on
the path between a normal �N� and superconducting �S� terminal in
the structure �a� under high bias U	kBT. �d� Distribution function
in the T structure �b� under similar conditions. Due to Andreev
reflection f��� is discontinuous at the N-S interface as explained in
the text.

FIG. 6. SEM image of S/N/S Josephson junction. The X shape
is deposited Ag that connects to �difficult to see� Al reservoirs
above and Ag reservoirs below patterned by angled evaporation.
The feature in the Ag wire near N2 is likely due to a near burn in
the sample.
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sample vary with the phase � due to the proximity effect.24

The phase �, in turn, varies between �� /2 as a function of
the supercurrent IS passing between S1 and S2; hence, one
observes a variation of the resistances as a function of IS.
This effect is shown in Figs. 7�c� and 7�d�, in which the
resistances between N1 and N2 �N1 and S2� were measured
versus IS for the antisymmetric and symmetric bias configu-
rations, respectively. Each curve in the lower two figures has
the same value of U as the corresponding I-V curve in the
upper figures. One can see that proximity effect induces a
local minimum in the resistance at Is=0 when the junction is
in the 0 state, because that is where �=0. In contrast, the
resistance exhibits a local maximum in the resistance at Is

=0 when the junction is in the � state, because �=�. Inter-
estingly, the top curve in Fig. 7�d� shows that at large enough
values of U, the system returns to the 0 state since the resis-
tance again shows a local minimum at Is=0. This high-U
transition from the � state back to the 0 state was not visible
in the S/N/S I-V curves.

Figure 8 shows the behavior Ic vs U at two different tem-
peratures. The squares represent antisymmetric bias while
triangles represent symmetric bias. Both bias configurations
appear similar in that the samples cross to the � state at
nearly the same value of U. It should be noted, however, that
the maximum � current is larger for symmetric bias than for
antisymmetric bias. That result is consistent with the quali-
tative arguments made above. In the next section we present
a quantitative analysis of the results.

C. Calculation of the critical current in an S/N/S Josephson
junction

The amount of supercurrent passing through an S/N/S Jo-
sephson junction may be calculated by17

IS =
NA

2
	

−�

�

dE�1 − 2f�E��jE�E� �1a�

=NA	
0

�

dEfL�E�jE�E� , �1b�

where N and A are the conductivity and cross-sectional area
of the normal metal, respectively. f�E� is the distribution
function within the normal wire and fL�E�� f�−E�− f�E� is
the antisymmetric component of f�E� with respect to the po-
tential of the superconductors. The spectral supercurrent den-
sity jE�E� is an odd function of energy, and describes the
amount of supercurrent at a given energy traveling between
superconductors with relative phase difference �. In the
samples considered in the present work, it is generally suffi-
cient to calculate the supercurrent using the the distribution
function at the crossing point of the wires.

FIG. 7. Data showing voltage drops across segments of wire
either in antisymmetric or symmetric arrangements while current
flows from S1 to S2. Each line �offset for clarity� corresponds to a
different value of U. �a� Voltage across S1 to S2 for the antisym-
metric measurement. Applied voltages U are from the bottom: 19,
28, 38, 52, and 71 �V. �b� Voltage across S1 to S2 for the symmet-
ric measurement. Applied U: 17, 25, 37, 49, 72, and 131 �V. �c�
Resistance across N1 to N2 for the antisymmetric measurements.
�d� Resistance across N2 to S2 for the symmetric measurements,
taken from voltage measurements in which a constant resistance
was subtracted from the graph.

FIG. 8. �Color online� Critical current of a four-terminal S/N/S
Josephson junction versus voltage U applied to the normal reser-
voirs. The voltages are applied either antisymmetrically ��� or
symmetrically ��� to the two reservoirs. Solid lines represent si-
multaneous best fits to data at different temperatures. Fitting meth-
ods are discussed in the text for data taken at bath temperatures �a�
35 mK and �b� 170 mK. The dashed line represents the best fit
when Joule heating is excluded.
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To determine jE�E�, we solve the Usadel equation numeri-
cally using the known physical dimensions and electrical re-
sistances of the various wire segments of the sample. We
then look for consistency with the measured temperature de-
pendence of the equilibrium critical current Ic�T� shown in
Fig. 9. The jE�E� used to fit these data, evaluated at �
=� /2, is shown in the inset of Fig. 9. Since the length L of
the junction is much longer than the superconducting coher-
ence length �s of the S electrodes for all the samples studied
in this work, the damped oscillations in jE�E� occur on an
energy scale given by the Thouless energy ETh=�D /L2,
where D is the diffusion constant in the wire. ETh character-
izes the temperature scale over which the equilibrium critical
current drops to zero, and also determines the voltage scale
U needed to create a nonequilibrium � junction. The transi-
tion from the 0 state to the � state occurs at eU�8ETh. The
fit shown in Fig. 9 was obtained with ETh=4.11 �eV.

Next we calculate f�E� in the nonequilibrium situation
with antisymmetric bias, i.e., with voltages U and −U ap-
plied to reservoirs N1 and N2. Because we are interested in
the distribution function far from the superconducting reser-
voirs, we consider f�E� using the Boltzmann equation. Let us
first ignore the supercurrent and proximity effects, although
inclusion of those effects will be discussed in detail in Sec.
VI. In a reservoir at voltage U, f�E� is a Fermi-Dirac distri-
bution displaced by energy eU, f�E�= fFD�E−eU�= 
exp��E
−eU� /kBT�+1�−1. In the experiment with antisymmetric
bias, we then have f�E�= fFD�E−eU� at reservoir N1 and
f�E�= fFD�E+eU� at reservoir N2. If we neglect inelastic
electron scattering, then in the middle of the wire �at the
intersection of the cross� f�E� has the double-step shape

f�E� =
1

2
�fFD�E + eU� + fFD�E − eU�� . �2�

In fact, the odd part of f�E� is the same everywhere in the Ag
wire

fL�E� =
1

2
�tanhE − eU

2kBT
� + tanhE + eU

2kBT
�� . �3�

This conclusion holds also in the presence of the proximity
effect. At energies �E��eU, the even part fT�E� varies lin-
early with distance between the two reservoirs �the lower
two arms of the sample�, but is zero everywhere along the
direct path connecting the two superconductors �in the ideal
case where the resistances of the two lower arms are equal�.

To calculate f�E� in the experiment with symmetric bias,
we need the boundary conditions at the interfaces between
the normal wires and the superconducting reservoirs. For en-
ergies below the superconducting gap � these conditions are
fT=0 and �fL /�x=0, where fT�E��1− f�E�− f�−E�. These
boundary conditions assume high-transparency interfaces, no
charge imbalance in the superconductors, and no heat trans-
port into the superconductors.25 �Note that fL�E� is discon-
tinuous at the N-S interface for energies below the gap, and
returns to the standard form tanh�E /2kBT� in the S elec-
trodes.� The solution for f�E� at the N /S interface is identical
to Eq. �2�, but the symmetric component fT�E� is nonzero
elsewhere in the wire. Notice that the odd component of the
distribution function fL�E� is identical in the two cases ev-
erywhere in the sample. The proximity effect induces a small
feature in fL�E� discussed in Sec. VI, but it is zero at the
crossing point in the middle of the sample.

Calculation of f�E� in the realistic situation requires con-
sideration of electron-electron interactions in the Ag wire.
�The electron-phonon interaction, in contrast, is much
weaker, and need be considered only in the massive normal
reservoirs. See the discussion below.� To incorporate
electron-electron interactions, we solved the Boltzmann
equation in the wire numerically, following previous work by
Pierre.26,27 The results of this numerical calculation of f�E�
in the situations with either symmetric or antisymmetric bias
were extremely similar. Indeed, the slight additional round-
ing of f�E� in the antisymmetric case could not account for
the differences observed in the experiment, shown in Fig. 8.

To account for the difference in the observed Ic�U� be-
tween the two experiments, we next considered the effect of
Joule heating on the temperatures of the normal reservoirs.
�Due to Andreev reflection at the N/S interfaces, there is no
heat transport into the superconducting reservoirs.� Although
we intentionally fabricated the normal reservoirs much
thicker than the wires, this was not enough to eliminate the
effects of Joule heating altogether. The heat current in a res-
ervoir at a distance r from the juncture with the wire is given
by

j̄Q = − £T � T �
P

�rt
r̂ , �4�

where P= I2R is the total power dissipated in the wire,  and
t=310 nm are the conductivity and the thickness of the res-
ervoir, respectively, and £��2 /3�kB /e�2=2.44

10−8 V2 /K2 is the Lorenz number. �We neglect the small
additional Joule heat generated in the reservoirs themselves.�
The spreading angle ��� if we consider the combination of
the two normal reservoirs shown in Fig. 6.

FIG. 9. Critical current Ic at several temperatures for the sample
shown in Fig. 6. The line is the best fit by solving equation �1b�
with a Fermi-Dirac distribution function. Inset: Solution for spectral
supercurrent used to fit data.
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Using Eq. �4� as a boundary condition, one can find an
effective temperature at the wire-reservoir interface equal
to28

Teff = �T2 + b2U2. �5�

The temperature far away in the normal reservoir is assumed
to be T, the bath temperature. The factor b is given by29

b2 =
R�

�£R
ln

r1

r0
, �6�

where R��1 / �t� is the sheet resistance of the normal res-
ervoir, r0� the wire width, and r1 is the distance over which
the electrons in the reservoir thermalize to the bath tempera-
ture via electron-phonon scattering. The parameter b varies
inversely with the thickness of the metal reservoir and the
electrical resistance encountered by the quasiparticle current
in the wire. Because the voltage drop U in the antisymmetric
bias situation occurs entirely between a normal reservoir and
the crossing point, the resistance R is smaller than in the
symmetric bias situation where U drops fully from the N
reservoirs to the N/S interfaces. The larger current in the
former case causes more Joule heating, and hence a larger
reservoir temperature. For our sample, the values of b needed
to fit the data �see solid lines in Figs. 8�a� and 8�b�� are 2.7
and 3.2 K /mV, respectively, for the symmetric and antisym-
metric bias experiments. Their ratio of 1.2 matches the ratio
calculated from the sample parameters. Their magnitudes,
however, are nearly three times larger than what we calculate
based on the total reservoir thickness. The experiment seems
to suggest that heat was trapped in the 35-nm Al layer at the
bottom of the reservoirs, rather than immediately spreading
throughout the whole reservoir thickness.30

V. APPLICATION OF A PARALLEL MAGNETIC FIELD
AND THE “ZEEMAN” � JUNCTION

There is a long history of applying magnetic fields per-
pendicular to the direction of current flow in superconductor/
insulator/superconductor �S/I/S� Josephson junctions, to ob-
serve the famous Fraunhofer pattern in the critical current. In
S/N/S junctions, the Fraunhofer pattern is observed only in
wide junctions, whereas narrow junctions exhibit a mono-
tonic decrease of the critical current with field due to the
orbital pair-breaking effect.31

In this section we discuss the effect of a magnetic field
applied parallel, rather than perpendicular, to the current di-
rection. In this geometry there should never be a Fraunhofer
pattern. And because the samples are thin films, one expects
the orbital pair-breaking effect to be much weaker than for a
field applied perpendicular to the plane. In the case of an
extremely thin sample the Zeeman �spin� effect should domi-
nate over the orbital effect of the field.

The effect of Zeeman splitting on an S/N/S Josephson
junction was studied theoretically in 2000 by Yip10 and by
Heikkilä et al.9 Their idea is that the electronic structure of a
normal metal in a large applied magnetic field resembles that
of a weak ferromagnet, in that the up and down spin bands
are displaced by the Zeeman energy. They also showed how

the Zeeman-split junction behaves analogously to the non-
equilibrium S/N/S junction, with the Zeeman energy playing
the role of the voltage in Eqs. �1b� and �3�. Josephson junc-
tions made with real ferromagnetic materials �S/F/S junc-
tions� are the subject of intense current interest, as they can
also show �-junction behavior.32 Unlike the �-junctions dis-
cussed earlier in this paper, however, the � junctions in S/F/S
systems occur in equilibrium. They appear only in particular
ranges of the F-layer thickness, due to spatial oscillations in
the superconducting pair correlations induced in the F metal
near the F-S interface by proximity effect. Those oscillations,
in turn, arise from the different Fermi wave vectors of the
spin-up and spin-down electrons in the F metal. In diffusive
S/F/S junctions, the sign of the coupling between the two
superconductors oscillates over a distance scale �F
= ��D /Eex�1/2, where D is the diffusion constant and Eex is
the exchange energy in the ferromagnet. In the standard el-
emental ferromagnets, Eex is large ��0.1 meV�, hence �F is
extremely short—on the order of 1 nm. Control of sample
thickness uniformity at this scale is difficult, hence several
groups have used dilute ferromagnetic alloys, with reduced
values of Eex, to increase �F. The advantage of the “Zeeman”
� junction is that it is fully tunable by the field. The disad-
vantage is that the sample must be thin enough to minimize
the effects of orbital pair breaking in both the superconduct-
ing electrodes and in the normal part of the junction.

Figure 10 shows a plot of Ic vs B in an S/N/S sample
whose normal part had length L=1.4 �m, width w=50 nm
and thickness t=33 nm. The critical current decreases mono-
tonically to zero, over a field scale of �0.1 T. This result
might appear surprising at first glance: At a field B=0.1 T,
the magnetic flux enclosed in the cross section of the wire
perpendicular to the field is only ��1.6
10−16 T m2

=0.08�0, where �0=h /2e is the superconducting flux quan-
tum. Furthermore, separate tests of the Al banks confirm that

FIG. 10. Critical current across S/N/S junction as a function of
external magnetic field applied parallel to the current direction. In
the absence of orbital pair-breaking effects, the transition into the �
state would be expected near 0.35 T. Markers indicate experimental
results and solid line the scaling �7� obtained from the Usadel equa-
tion. Inset: Critical current versus applied voltage for same sample,
showing transition to the � state at U=20 �V.
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they remain superconducting to fields of order 0.85 T.
A quantitative understanding of the data in Fig. 10 can be

obtained from a solution to the Usadel equation. The analysis
discussed in the Appendix shows how a parallel magnetic
field can be absorbed into a spin-flip rate �sf in the equations.
This allows us to apply the scaling Ic�B� / Ic�B=0��exp�
−0.145�sf /ETh� for the zero-temperature supercurrent of an
S/N/S junction found in Ref. 33 and find

Ic�B�/Ic�B = 0� � e−�B/B1�2
, �7�

B1 � 6.43
��w2 + t2

eLwt
� 0.10 T. �8�

Our numerical calculations confirm that this scaling also ap-
plies in our multiprobe experimental geometry. This predic-
tion is in a good agreement with the experiment, as seen in
Fig. 10.

In the limit w	 t, the characteristic field scale B1 varies as
�0 /Lt, rather than the more intuitive result �0 /wt we might
expect based on the cross-sectional area of the wire perpen-
dicular to the field. The physical explanation for this result
was given by Scheer et al.34 in a paper discussing universal
conductance fluctuations as a function of parallel field in
normal metal wires. As an electron travels down the length
of a long diffusive wire, its trajectory circles the cross sec-
tion of the wire many times—on the order of N��L /w�2.
Because diffusive motion can be either clockwise or coun-
terclockwise as seen looking down the wire, the standard
deviation in net flux and accumulated phase between differ-
ent trajectories is approximately proportional to Bwt�N
=BLt, which gives the scaling for dephasing.

It is instructive to ask what constraints on the sample
geometry would have to be met to enable observation of the
Zeeman � junction. We estimate the Thouless energy of the
sample discussed in Fig. 10 to be ETh�2.5 �eV both from
the temperature dependence of Ic �not shown�, and from the
voltage-induced transition to the � state at Uc=20 �V �inset
to Fig. 10�. According to theory, the Zeeman � junction
should occur when g�BB�16ETh,

9,10 or B=0.35 T. Attempts
to make thinner samples in order to increase the field scale
B1 in Eq. �7� were unsuccessful, due to the tendency of very
thin Ag films to ball up. According to the theory, much thin-
ner films, with t /L of the order of 0.2g�B /eD�0.001, will
be required to enable observation of the Zeeman � junction.

VI. ENGINEERING THE DISTRIBUTION FUNCTION

The discussion in Sec. IV B implied that the three-
terminal and four-terminal � junctions are similar, with only
minor differences due to a slight decrease in the phase space
available for electron-electron interactions in the three-
terminal case. But that oversimplified discussion misses
some important physics. Heikkilä et al.11 showed that the
superposition of quasiparticle current and supercurrent in the
horizontal wire in the three-terminal sample induces a
change �f�E� in the distribution function at energies of order
ETh. The new feature is antisymmetric in space and energy
�see Fig. 16 for the theoretical prediction and our experimen-

tal results which follow each other nicely�, and can be inter-
preted as a gradient in the effective electron temperature
across the S/N/S junction. For this reason, the result was
dubbed a “Peltier-like effect.� Although a tiny cooling effect
does occur, observing it in a real electron temperature would
require a slightly modified experimental setup.35 In the
present case, one should view this effect mostly as a redis-
tribution of the Joule heat generated in the sample by the
applied bias U.

In Sec. IV C it was discussed how the distribution func-
tions behave in the absence of proximity effects and super-
current. Including these effects, but ignoring inelastic scat-
tering, results in the kinetic equations36

�jT

�x
= 0, jT � DT�x�

�fT

�x
+ jEfL + T�x�

�fL

�x
, �9a�

�jL

�x
= 0, jL � DL�x�

�fL

�x
+ jEfT − T�x�

�fT

�x
, �9b�

where jT�E� and jL�E� are the spectral charge and energy
currents, respectively. The energy-dependent coefficients DT,
DL, jE, and T can be calculated from the Usadel equation,6,36

and vary with the superconducting phase difference � be-
tween S1 and S2. In general, these equations must be solved
numerically; however, they can be solved analytically by ig-
noring the energy dependence in DT and DL and neglecting
the T terms. One can show that, in the presence of both the
applied voltage U and a nonzero supercurrent between S1
and S2, fL along the horizontal wire connecting the two su-
perconductors contains a spatially antisymmetric contribu-
tion proportional to jE�E�. In the exact numerical solution to
Eqs. �9�, the feature is distorted due to the rapid evolution of
the diffusion coefficients DT and DL near the N/S
interfaces.11

The antisymmetric feature in f�E� can be measured by
performing tunneling spectroscopy with a local supercon-
ducting tunnel probe, which has been demonstrated by
Pothier et al.21 to reveal detailed information about f�E� in a
metal under nonequilibrium conditions. In our case, the local
probe must be placed close to the N/S interface where the
predicted feature in f�E� has its maximum amplitude. This
location introduces a new difficulty in our experiment be-
cause the density of states �DOS� of the Ag wire near the N/S
interface is strongly modified by proximity effect. Hence we
must first determine the modified DOS at equilibrium before
we measure f�E� under nonequilibrium conditions.

The current-voltage characteristic of the probe tunnel
junction is

I�V� = −
1

eRT
	 dEnAl�E� 	 d�P���



fAl�E�nAg�E − eV − ���1 − fAg�E − eV − ���

− �1 − fAl�E��nAg�E − eV + ��fAg�E − eV + ��� ,

�10�

where RT is the normal state tunnel resistance, nAg and nAl
are the normalized densities of states, and fAg and fAl are the
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electron energy distribution functions on the Ag and Al sides
of the tunnel junction, respectively. The function P���
characterizes the probability for an electron to lose energy
� to the resistive environment while tunneling across the
oxide barrier, an effect known as “dynamical Coulomb
blockade.”37 P��� was determined from equilibrium mea-
surements at high magnetic field, where superconductivity is
completely suppressed. Details of the fitting procedure used
to extract P��� were reported earlier.12

Quantitative analysis of our tunneling data requires an
accurate determination of the superconducting gap � hence
we fabricated a second S/I/N Tunnel junction simultaneously
with the sample, but placed about 20 �m away from it, and
with the N side of the junction far from any superconductor.
Tunneling spectroscopy measurements on this reference
junction, shown in Fig. 11�a�, were fit to Eq. �10� with nAg
independent of energy and with the standard BCS form for
nAl, to provide an accurate determination of �.

Several of our tunnel junctions exhibited sharp anomalies
in the conductance data for voltages close to the supercon-
ducting gap; however, these features disappeared with the
application of a small magnetic field of B=12.5 mT.38 Figure
12 shows dI /dV data for one particular tunnel probe for dif-
ferent magnetic field strengths. Along with each data set are
fits using the standard BCS form for nAl�E� with a small
depairing parameter proportional to B2, which has been
shown to account well for applied magnetic fields.39 Adding
this term effectively rounds the DOS in the superconductor.
Following the notation of Ref. 39 we determined a depairing
parameter of ��� /�=0.0020 for B=12.5 mT and a super-
conducting gap in the Al of �=274 �eV. This rather large

value for � was consistent across samples and is believed to
be due to oxygen incorporated into thin, thermally evapo-
rated Al films.40,41

With the form for nAl�E� confirmed, it is possible to ana-
lyze the dI /dV data for the sample tunnel probe, which is in
close proximity to superconducting reservoirs. Figure 11�b�
shows the dI /dV for this probe with an external field of
12.5 mT applied. The differences between the dI /dV data
from tunnel probes nearby or far away from superconducting
reservoirs arise from changes in the DOS of the normal wire
due to the proximity effect. Rather than a flat DOS used to fit
the data in Fig. 11�a�, the DOS in the Ag wire near the
superconducting reservoirs is modified as shown by the
squares in Fig. 11�d�. This shape was obtained by deconvolv-
ing the dI /dV data.

Also shown in Fig. 11�d� is the density of states of the Ag
wire determined from a numerical calculation of the Usadel
equation �solid line�. This calculation requires knowledge of
the sample dimensions, the gap in the superconducting res-
ervoirs, and the Thouless energy. The sample dimensions
were obtained from scanning electron micrographs, such as
the one shown in Fig. 1. The gap in the superconducting
reservoirs was found to be ��150 �eV. This value of � is
much smaller than the value in the Al tunnel probe because
the reservoirs are much thicker than the tunnel probes �and
presumably contain much less oxygen�, and because they are
close to a normal metal-superconductor bilayer. Finally, the
Thouless energy was determined by fitting the critical current
vs temperature data as discussed in Sec. IV C. The value of
ETh was then refined through self-consistent calculations in-
volving both the finite probe size and the position dependent
order parameter � in the superconducting reservoirs.

When supercurrent flows through the S/N/S junction, the
phase difference of the reservoirs � changes nAg�E�. For this
reason, dI /dV data were also taken with supercurrent flowing
across the S/N/S junction. The resulting fits of nAg for I
=0.9Ic and I=−0.9Ic, which are identical to each other, are

FIG. 11. �a� Differential conductance data and their best fit for
the reference S/I/N tunnel junction at B=13 mT and T=40 mK. �b�
Circles are the Al density of states nAl�E� used to produce the fit in
part �a�. �The solid line shows the ideal BCS DOS without a mag-
netic field, for comparison.� �c� The dI /dV data and their best fit in
equilibrium for the tunnel probe on the sample shown in Fig. 1, at
B=12.5 mT. �d� Squares are the nAg�E� used to produce the fit in
part �c�. The solid line is a fit to the solution of the Usadel equation
discussed in the text.

FIG. 12. �Color online� Expanded view of differential conduc-
tance data for eV near � from the tunnel probe far away from
superconducting reservoirs, for select magnetic fields. Symbols rep-
resent data while solid lines are best fits to BCS theory using a
single value of the gap � and a depairing strength proportional to
B2. Notice that the data at B=0 deviate significantly from the
theory, whereas the data sets with B�13 mT are fit well by the
theory.
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shown in Fig. 13 along with one for I=0. It is noteworthy
that the change of shape �more narrow at low energies,
broader at intermediate ones� is qualitatively consistent with
theoretical calculations shown in the inset.

It was anticipated that applying a voltage to the normal
lead would not alter nAg�E� so that it would be possible to
deconvolve the distribution function fAg�E� for the system
out of equilibrium. Figure 14 shows that this assumption
does not hold, as the best fits for applied voltages U
=22 �V and U=63 �V are poor. Only by using an altered
nAg�E� was it possible to fit the data in Fig. 14.

Changes in nAg�E� with increasing U are probably due to
a slight suppression of the gap in the superconducting elec-
trodes, which are adjacent to superconductor/normal-metal
bilayers. To estimate how nAg�E� changes, we used two dif-
ferent forms for the distribution function fAg�E�. First, we
computed fAg�E� from Eqs. �9a� and �9b�, which include

proximity effects due to the nearby superconducting reser-
voirs, but neglect inelastic scattering. Second, we solved the
diffusive Boltzmann equation with collision integrals for
electron-electron scattering, while neglecting superconduct-
ing correlations. The two forms for the distribution functions
are shown in Figs. 15�a� and 15�b� for two different values of
U: 25 �V and 63 �V. Using those distribution functions,
new densities of states were obtained by deconvolution of
the dI /dV data and are shown as the symbols in Figs. 15�c�
and 15�d�. Notice that the two different forms of the distri-
bution function yield similar results for nAg. Figures 15�c�
and 15�d� also show nAg obtained from equilibrium dI /dV
data, as the solid lines. However, the resulting nAg does not
obey the sum rule

	 dE�nAg − 1� = 0,

that should be valid in all situations. We do not know what
causes this discrepancy.

Fortunately it is possible to extract information about
fAg�E� using a method that is relatively insensitive to the
exact form of nAg�E�, by taking advantage of a near symme-
try of the data with respect to the direction of IS. The data
shown in Fig. 13 confirm our expectation that nAg�E ,U
=0, IS�=nAg �E ,U=0,−IS�, a symmetry that also holds ap-
proximately for U�0. Hence, one can analyze the difference
between two data sets with opposite directions of the super-
current dI /dV�V ,U , IS�−dI /dV�V ,U ,−IS�, which will de-
pend on the differences in the distribution functions
�fAg�E�� fAg�E ,U , IS�− fAg�E ,U ,−IS�. The effect of analyz-

FIG. 13. �a� Density of states of Ag wire at location of tunnel
probe with different amounts of supercurrent flowing across the
S/N/S junction. Solid and hollow circles represent nAg for Is

=0.9Ic and Is=−0.9Ic, respectively, while the solid line is for Is=0.
Inset: Theoretical results of injecting supercurrent into device. Solid
line for Is=0 and dots for Is= � .9Ic

FIG. 14. Differential conductance tunneling data taken with a
voltage U applied between N to S1 to drive the system out of
equilibrium. Solid lines are the best fits using the nAg data from Fig.
13. �a� U=22 �V. �b� U=63 �V. The fits are unable to reproduce
the data.

FIG. 15. �Color online� Calculated DOS using expected forms
for distribution functions. �a� Distribution functions for U=25 �V.
Solid circles were calculated by solving Eqs. �9� without collision
integrals. Open circles were calculated by solving Boltzmann equa-
tion including collisions, but not including superconducting corre-
lations. �b� Distribution functions for U=63 �V. Below are the
deconvolved forms for nAg using the above distribution functions
when �c� U=25 �V and �d� U=63 �V. In both, solid lines repre-
sent U=0 �V, for comparison.
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ing the data with the wrong DOS for the Ag is greatly re-
duced in this case. The feature we seek in �fAg�E� is pre-
dicted to be odd in Is, hence it should be the only
contribution to �fAg�E�. Figure 16�a� shows �f with U
=22 �V and IS=0.9Ic, which exhibits the predicted feature
that is antisymmetric in energy. The solid lines are the nu-
merical solution to Eqs. �9�, with the parameters ETh and �
obtained from the previous fits, with no additional fit param-
eters. The computed theory curves agree well with the ex-
perimental data.

A further test of the robustness of the experimental results
is to compare the measured form of �fAg�E� when the signs
of both U and IS are reversed, i.e., fAg�E ,−U ,−IS�− fAg�E ,
−U , IS�. The results of this second measurement are shown
superimposed on the first in Fig. 16�a�. The agreement be-
tween the two data sets is excellent.

Interestingly, applying a voltage U�34 �V brings this
sample into its � state. Figure 16�b� shows �f�E� data for
U=63 �V and IS=0.9Ic. Compared to Fig. 16�a�, the sign of
the low-energy feature in �f�E� is reversed, demonstrating
that the phase difference �, rather than the supercurrent, de-
termines the sign of the new feature in f�E�.

The results of Fig. 16 indicate that the supercurrent has a
large effect on the electron energy distribution function in-
side the normal metal. Such a mechanism has been utilized
to explain36 the large thermopower measured in Andreev
interferometers42—systems with two normal-metal and two
superconducting contacts. Our results confirm this mecha-
nism and point out to new phenomena dependent on it, such
as the large Peltier effect:35 in linear response to the quasi-
particle current �voltage�, the supercurrent-induced change
�f translates into a change of the electron temperature and
the sign of this change �heating or cooling� depends on the
relative sign of the supercurrent compared to the sign of the
quasiparticle current. One can hence cool part of the struc-
ture by simultaneously applying a quasiparticle current and a
supercurrent.

VII. CONCLUSIONS

Superconductor/normal-metal hybrid systems exhibit a
wealth of fascinating behaviors, starting with the proximity
and Josephson effects. Driven out of equilibrium, the possi-
bilities increase, from the nonequilibrium � junction to the
supercurrent-induced modification of f�E� discussed in the
final section of this paper. All of these observations can be
interpreted with two main concepts: the spectrum of the su-
percurrent jE�E� and the electron distribution function f�E�.
The latter can be tuned by applying voltages or changing the
temperature—the previous for example by applying a mag-
netic field. In Secs. III, IV, and VI we showed in different
schemes how the nonequilibrium f�E� changes the observed
supercurrent and how the supercurrent affects f�E�. In Sec. V
we discuss the modifications in jE�E� due to a magnetic field
and the resulting changes in the supercurrent. To our knowl-
edge, the effect of a parallel magnetic field on the S/N/S
critical current had not been explored in detail before.

As discussed in Refs. 9 and 10, the Zeeman effect due to
a magnetic field will cause analogous changes in the super-
current as the nonequilibrium population of the supercurrent
carrying states. This exact analogy is distorted on one hand
due to the inelastic scattering changing the nonequilibrium
distribution function and, on the other hand, the orbital effect
arising from the magnetic field. It remains an experimental
challenge to show this analogy and combine the two effects
in the case when the Zeeman effect dominates over the or-
bital effect. As we discuss in Sec. V, the latter would require
constructing extremely thin junctions.

Recently there has been intense interest in the limit where
a Josephson junction behaves as a coherent quantum system
with one degree of freedom.43 There is hope that Josephson
junctions will someday provide the building blocks for a
quantum computer. In the meantime, we hope to have dem-
onstrated that even in the classical regime, the Josephson
junction is full of surprising new possibilities. While prepar-
ing this manuscript, we learned about recent related works31

where the magnetic field dependence of the S/N/S supercur-
rent was also studied.
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APPENDIX A: USADEL EQUATION AND THE MAGNETIC
FIELD

The Usadel equation in a magnetic field can be written as
follows, making use of the � parametrization G=cosh �, F
=ei� sinh � of the quasiclassical Green’s functions4,6,9,10

�D�2� = − 2i�E + h�sinh � + ��sf +
vs

2

2D
�sinh 2� ,

�A1�

FIG. 16. �Color online� �a� �f�E�� fAg�E ,U , IS�− fAg�E ,U ,
−IS� for U=22 �V and IS=0.9Ic. �b� Same quantity for U=63 �V
and IS=0.9Ic, where U�34 �V corresponds to the system being in
the � state. In both figures, a second data set �open circles� is shown
with the signs of both UN and IS reversed. Solid lines are numerical
solutions to Eq. �9�.
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��vs sinh2 �� = 0, vs � D��� − 2eA/�� . �A2�

Here, D is the diffusion constant, A the vector potential, �sf
the spin-flip rate, vs the gauge-invariant superfluid velocity,
and h= 1

2g��B� the Zeeman energy. The equation is to be
solved separately for both spin configurations =�,
assuming spin-independent material parameters. The spin-
averaged spectral supercurrent jE= 1

2 Im�vs �sinh2 ��=+

+vs �sinh2 ��=−� /D is obtained from the solutions and can be
used to calculate the observable supercurrent under various
conditions. Below, we consider these equations in a wire that
has an uniform cross section S, and assume the boundary
conditions

� = � �/2, � = �0, at x = 0,L , �A3�

n̂ · vs = 0, n̂ · �� = 0, on �S , �A4�

where �S is the boundary of S. These imply that we neglect
details of the current distribution near the terminal-wire con-
tact.

When a magnetic field is applied to a wire, in addition to
the Zeeman splitting, the field induces circulating compo-
nents to the supercurrent flowing in the wire �see Fig. 17�.
These currents contribute to decoherence, for example, re-
ducing the magnitude of the critical current, and in the gen-
eral case also prevent reducing Eqs. �A1� to one-dimensional
equations in the direction parallel to the wire. For thin wires,
however, the additional decoherence can be simply absorbed
to the spin-flip parameter �sf in the one-dimensional Usadel
equation and the vector potential can otherwise be
neglected.33,39,44,45 Below, we show how this conclusion can
be reached for an arbitrary orientation of the magnetic field,
and that the results are consistent with the discussion in Sec.
V.

Reducing Eq. �A1� to a one-dimensional equation is pos-
sible when the transverse dimensions d of the wire satisfy
d�L , lm, where L is the distance between the superconduct-
ing contacts and lm=�� /eB a magnetic length scale. This is
because � varies on the length scales of lm and lE=��D /E
�L when considering energies E��D /L2 relevant for the
supercurrent. For perpendicular fields it is also possible to
directly choose a proper London gauge where � varies
slowly in the transverse direction and vS�A.

Since lm�80nm for B�0.1 T, in the experimentally in-
teresting situation we have w� lm� lE�L. To handle the de-
tails of the problem in this case, we apply perturbation theory
in the parameter �=d /L. We choose a coordinate system
such that x is the coordinate parallel to the wire and y and z
correspond to transverse directions, and fix a convenient
gauge A= �Byz−Bzy ,−Bxz ,0� in which the vector potential is
independent of x. Finally, we rewrite Eqs. �A1� in the dimen-

sionless variables x̃=x /L, ỹ=y /�L, z̃=z /�L, B̃=eL2B /��
and substitute in the regular series expansion �=�0+��1
+�2�2+¯, �=�0+��1+�2�2+¯.

Requiring the equations corresponding to orders �−2, �−1

and �0 of expansion to be separately satisfied, we first find
that the variables �0, �1 and �0 are independent of y and z.
We also find that the first-order response ��=��1 is given by

��
2 �� = 0, n̂ · �������S = n̂ · 2eA/� . �A5�

Here, �S is the boundary of the cross-section of the wire, n̂
its outward normal vector, and the operator �� consists of
the transverse components of the gradient. This
x-independent result applies in the central parts of the wire,
away from boundary layers near the ends of the wire. Finally,
after averaging the equations of order �0 across the cross
section S of the wire, we arrive at the result

�x
2�0 = − 2i�E + h�sinh �0 + ���sf + ��sinh 2�0, �A6�

�x�sinh2 �0�x�0� = 0, �A7�

� �
�D

2S
	

S

dydz�x̂�x�0 + ���� − 2eA/��2. �A8�

This shows how the effective spin-flip parameter is modified
by the applied field B.

The additional decoherence �A8� depends on the direction
of the field and the cross section of the wire. For a wire with
a circular cross section of radius R, we note that Eq. �A5� has
the exact solution ��=−eBxyz /�. This results to

� =
1

2
�D��x�0�2 +

e2D

2�
1

2
R2Bx

2 + R2By
2 + R2Bz

2� . �A9�

For wires with a rectangular cross section, we cannot solve
Eq. �A5� analytically. However, a variational solution is still
possible: we can expand �� in polynomials of y, z to orders
n�3 and project Eq. �A5� onto this function basis. From this
procedure, we find

�� � −
2eBx

�

dz
2

dy
2 + dz

2 yz , �A10�

� =
1

2
�D��x�0�2 +

e2D

6�
�w̃yz

2 Bx
2 + dz

2By
2 + dy

2Bz
2� , �A11�

w̃yz
2 �

dy
2dz

2

dy
2 + dz

2 , �A12�

where dy and dz are the width and thickness of the wire. For
orders n�4 we obtain instead

x y

z
B

FIG. 17. Supercurrent flow induced by a magnetic field B
= �Bx ,By ,Bz�� �3,1 ,2� in a thin rectangular wire. The arrows indi-
cate the magnitude and direction of the superfluid velocity vS.
Fourth-order variational solution for � is used here, see text.
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w̃yz
2 =

dy
2dz

2

dy
2 + dz

2�1 −
266dy

2dz
2

105dy
4 + 1500dy

2dz
2 + 105dz

4� . �A13�

Approximations using higher-order basis produce only slight
improvements in accuracy to �.

We now note that the contribution of the magnetic field to
the decoherence rate � is of the form e2Dd2B2 /� for all
directions of the field, where d is proportional to some trans-
verse dimension of the wire. Comparing this to the energy
scale ET=�D /L2 of the one-dimensional Usadel equation

�A6�, we find a dimensionless parameter �eBLd /��2

� �� /�0�2 that determines how much the magnetic field sup-
presses coherence. Here, the flux � corresponds to an area
L
d, which is in agreement with the discussion in Sec. V.

Finally, note that above we neglected the screening of the
magnetic field by the induced supercurrents. However, this
should not be important in the experimental case, as the Jo-
sephson screening length �J=��d2 /2e�0IcL�200 nm is
larger than the width of the junction, and the aluminum ter-
minals are sufficiently thin as to produce only small screen-
ing.

*Present address: Department of Physics, Taylor University, Up-
land, IN 46989, USA.

†Present address: Laboratoire de Photonique et de Nanostructures-
CNRS, Route de Nozay, 91460 Marcoussis, France.

‡birge@pa.msu.edu
1 P. G. de Gennes, Rev. Mod. Phys. 36, 225 �1964�.
2 B. Pannetier and H. Courtois, J. Low Temp. Phys. 118, 599

�2000�.
3 C. J. Lambert and R. Raimondi, J. Phys.: Condens. Matter 10,

901 �1998�.
4 W. Belzig, F. K. Wilhelm, C. Bruder, G. Schön, and A. D. Zaikin,

Superlattices Microstruct. 25, 1251 �1999�.
5 J. J. A. Baselmans, A. F. Morpurgo, B. J. van Wees, and T. M.

Klapwijk, Nature �London� 397, 43 �1999�.
6 K. D. Usadel, Phys. Rev. Lett. 25, 507 �1970�.
7 R. Shaikhaidarov, A. F. Volkov, H. Takayanagi, V. T. Petrashov,

and P. Delsing, Phys. Rev. B 62, R14649 �2000�.
8 J. Huang, F. Pierre, T. T. Heikkilä, F. K. Wilhelm, and N. O.

Birge, Phys. Rev. B 66, 020507�R� �2002�.
9 T. T. Heikkilä, F. K. Wilhelm, and G. Schön, Europhys. Lett. 51,

434 �2000�.
10 S. K. Yip, Phys. Rev. B 62, R6127 �2000�.
11 T. T. Heikkilä, T. Vänskä, and F. K. Wilhelm, Phys. Rev. B 67,

100502�R� �2003�. Note that in this reference there is a sign
error in the T�x� coefficient, which increases the amplitude of
the change �f .

12 M. S. Crosser, P. Virtanen, T. T. Heikkilä, and N. O. Birge, Phys.
Rev. Lett. 96, 167004 �2006�.

13 G. J. Dolan and J. H. Dunsmuir, Physica B 152, 7 �1988�.
14 S. Gueron, Ph.D. thesis, University Paris VI, France, 1997.
15 A. F. Volkov, Phys. Rev. Lett. 74, 4730 �1995�.
16 A. F. Morpurgo, T. M. Klapwijk, and B. J. van Wees, Appl. Phys.

Lett. 72, 966 �1998�.
17 S. K. Yip, Phys. Rev. B 58, 5803 �1998�.
18 F. K. Wilhelm, G. Schön, and A. D. Zaikin, Phys. Rev. Lett. 81,

1682 �1998�.
19 I. O. Kulik, Sov. Phys. JETP 30, 944 �1970�.
20 T. T. Heikkilä, J. Särkkä, and F. K. Wilhelm, Phys. Rev. B 66,

184513 �2002�.
21 H. Pothier, S. Gueron, N. O. Birge, D. Esteve, and M. H. Devoret,

Phys. Rev. Lett. 79, 3490 �1997�.
22 B. J. van Wees, K.-M. H. Lenssen, and C. J. P. M. Harmans, Phys.

Rev. B 44, 470 �1991�.
23 J. J. A. Baselmans, T. T. Heikkilä, B. J. van Wees, and T. M.

Klapwijk, Phys. Rev. Lett. 89, 207002 �2002�.
24 V. T. Petrashov, V. N. Antonov, P. Delsing, and T. Claeson, Phys.

Rev. Lett. 74, 5268 �1995�.
25 A. F. Andreev, Sov. Phys. JETP 19, 1228 �1964�.
26 F. Pierre, Ann. Phys. �Paris� 26, 1 �2001�.
27 This procedure also neglects the �presumably weak� proximity

effect on the kernel of the electron-electron collision integral.
These are similar to those in bulk superconductors, see G. M.
Eliashberg, Zh. Eksp. Teor. Fiz. 61, 1254 �1971� �Sov. Phys.
JETP 34, 668 �1972��.

28 K. E. Nagaev, Phys. Rev. B 52, 4740 �1995�.
29 M. Henny, S. Oberholzer, C. Strunk, and C. Schonenberger, Phys.

Rev. B 59, 2871 �1999�.
30 M. S. Crosser, Ph.D. Thesis, Michigan State University, East Lan-

sing, 2005.
31 L. Angers, F. Chiodi, J. C. Cuevas, G. Montambaux, M. Ferrier,

S. Guéron, and H. Bouchiat, e-print arXiv:0708.0205 �unpub-
lished�; J. C. Cuevas and F. S. Bergeret, Phys. Rev. Lett. 99,
217002 �2007�.

32 V. V. Ryazanov, V. A. Oboznov, A. Yu. Rusanov, A. V. Vereten-
nikov, A. A. Golubov, and J. Aarts, Phys. Rev. Lett. 86, 2427
�2001�.

33 J. C. Hammer, J. C. Cuevas, F. S. Bergeret, and W. Belzig, Phys.
Rev. B 76, 064514 �2007�.

34 E. Scheer, H. v. Lohneysen, A. D. Mirlin, P. Wölfle, and H. Hein,
Phys. Rev. Lett. 78, 3362 �1997�.

35 P. Virtanen and T. T. Heikkilä, Phys. Rev. B 75, 104517 �2007�.
36 P. Virtanen and T. T. Heikkilä, J. Low Temp. Phys. 136, 401

�2004�, and references therein.
37 G. L. Ingold and Y. V. Nazarov, Single Charge Tunneling Cou-

lomb Blockade Phenomena in Nanostructures �Plenum Press,
London, 1992�, Vol. 294.

38 Similar behavior has been observed by other groups, cf. p. 40 of
F. Pierre, Ann. Phys. �Paris� 26, 1 �2001�.

39 A. Anthore, H. Pothier, and D. Esteve, Phys. Rev. Lett. 90,
127001 �2003�.

40 R. B. Pettit and J. Silcox, Phys. Rev. B 13, 2865 �1976�.
41 R. W. Cohen and B. Abeles, Phys. Rev. 168, 444 �1968�.
42 J. Eom, C.-J. Chien, and V. Chandrasekhar, Phys. Rev. Lett. 81,

437 �1998�; A. Parsons, I. A. Sosnin, and V. T. Petrashov, Phys.
Rev. B 67, 140502�R� �2003�.

43 V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. H. Devoret,
Phys. Scr. T76, 165 �1998�.

44 W. Belzig, C. Bruder, and G. Schön, Phys. Rev. B 54, 9443
�1996�.

45 P. G. deGennes, Superconductivity of Metals and Alloys �Perseus
Books, Massachusetts, 1966�, Chap. 8.

CROSSER et al. PHYSICAL REVIEW B 77, 014528 �2008�

014528-14


